An Ace in the Hole

Explosive Seed Discharge may be Facilitated by Declining Stomatal Density

Dylan Ziegler, Lyn Baldwin, Nancy Flood, Cynthia Ross Friedman

INTRODUCTION

- Dwarf mistletoes parasite conifers by invading the host’s vasculature, stealing water and nutrients.
- *Arceuthobium americanum* uses explosive discharge of the seed from the fruit as a dispersal mechanism.
- *A. americanum* infection causes timber losses estimated at 3.8 million m³ in western Canada and 1.1 million m³ in the western United States.
- Stomata are small pores in the plant epidermis involved in gas exchange and water movement.
- Integral to understanding the accumulation of hydrostatic pressure prior to discharge.

Objective: To determine if stomatal density changes as the fruit matures.

RESULTS

- Floral structures (the tepals and stigma) persist through second year of maturation (Figure 1).
- Fruit recurves downwards as it approaches discharge in September.
- *A. americanum* possesses transverse stomata.
- Stomata only observed on the stems, bracts, pedicels, and tepals of the plant; stomata were never observed on the fruit.
- Fruit length and diameter was found to increase over the growing season in all five trees sampled.
- Tepal whorl surface area increased in all trees.
- Stomatal density declined in all trees (Figure 2).

DISCUSSION

- Floral organs may provide necessary transpiration.
- Fruit diameter increases leading up to discharge; presumably due to water accumulation in the fruit.
- Cuticle development likely functions in water retention.
- The observed decline in stomatal density any of the following three non-exclusive mechanisms:
 1. Stomata number remains constant, surface area increases due to growth, consequently reducing stomatal density.
 2. Stomatal density decline may be a mechanism of water retention.
 3. A reduction in transpiration heats the plant up. Given the plant relies on thermogenesis to explode, this could be an additional mechanism to trigger the process.
- Future research: Investigate transpiration rates in the fruit and explore the otherwise undocumented genome.

METHODS

Collect *A. americanum* fruits from Stake Lake (once per week) from five randomly selected trees from April-September.

Examine fruits under Environmental Scanning Electron Microscope at a partial pressure of 56 Pa.

Image the whole fruit and tepal whorl; take measurements of the fruit length, diameter and stomatal density using the image analysis software, ImageJ.

Figure 1. Second year DM fruit SEM micrographs taken in A) April B) May C) June D) July E) August and F) September. Scale bars represent 400 µm in each micrograph. Images taken at 56 Pa of extended pressure by Zeiss LS Evo Scanning Electron Microscope. Micrographs have been artificially colourized, showing the fruit in green, the tepal whorl in beige, and highlighting the stomata in orange.

Figure 2. Stomatal density (stomata/mm²) change over the growing season. Curve generated by averaging all 5 trees sampled. Measurements taken using ImageJ.

Acknowledgements

I would like to thank the numerous supervisors and committees that enabled me to conduct this project. I would like to thank JoAnna Urban for her input regarding mistletoe physiology and development from a genetic perspective. I would also like to thank Mark Paetkau for his assistance in helping me design my data analysis methods. Additionally, Dave Pow’s technical assistance on the scanning electron microscope was indispensable in this project. In preparation for this poster, Amanda Ziegler graciously lent her time to colourize the electron micrographs, for which I am grateful for. Lastly, I am very thankful to NSERC for funding my project through Summer 2015.

Literature Cited

Additional Information:

- INTRODUCTION: Dwarf mistletoes, *Arceuthobium americanum*, use explosive seed discharge as a dispersal mechanism. Stomata are small pores involved in gas exchange and water movement. The objective is to determine if stomatal density changes as the fruit matures.

- RESULTS: Observations include:
 - Floral structures persist through the second year of maturation.
 - Fruit dimensions increase due to growth.
 - Stomatal density declines across the growing season.

- DISCUSSION: Potential mechanisms for stomatal density changes include:
 - Constant stomata number with increased surface area.
 - Stomatal density decline as a mechanism of water retention.
 - Thermogenesis triggering explosive seed discharge.

- METHODS: Collect fruits from Stake Lake, examine under a scanning electron microscope, and measure stomatal density using ImageJ.

- Acknowledgements: Thank you to supervisors, committees, and technical assistance providers.

- Literature Cited: References to Hawksworth, Shen, deBruyn, Wiens, Ramsfield, Riico, Godfrey, Friedman, Shumway, Ramsfield, and van der Kamp.